Dr. Jill Tarter
Director of SETI Research

Curriculum Vitae:

Astronomer Jill Tarter is Director of the Institute’s Center for SETI Research, and also holder of the Bernard M. Oliver Chair for SETI. She is one of the few researchers to have devoted her career to hunting for signs of sentient beings elsewhere, and there are few aspects of this field that have not been affected by her work.

Jill was the lead for Project Phoenix, a decade-long SETI scrutiny of about 750 nearby star systems, using telescopes in Australia, West Virginia and Puerto Rico. While no clearly extraterrestrial signal was found, this was the most comprehensive targeted search for artificially generated cosmic signals ever undertaken. 

Today, Jill and her team are using a large radio telescope, the Allen Telescope Array, that is optimally suited for finding a signal from another star system. With sufficient funding, this instrument can search millions of star systems in the coming decades – a thousand times the total examined since the first SETI experiment a half-century ago.  It is hard to imagine a discovery more profoundly exciting than learning that other beings exist among the star fields of the Galaxy.

Indeed, being as much of an icon of SETI as Jill is, perhaps it is not surprising that the Jodie Foster character in the movie “Contact” is largely based on this real-life researcher.

The Allen Telescope Array: Science Operations


Intellectual Merit The Allen Telescope Array (ATA) is a pioneering centimeter-wavelength radio telescope that will produce science that cannot be done with any other instrument. The ATA is the first radio telescope designed for commensal observing; it will simultaneously undertake the most comprehensive and sensitive SETI surveys ever done as well as the deepest and largest area continuum and spectroscopic surveys. The science of the ATA is enabled by a wide range of innovative technical developments. The astronomy decadal panel, Astronomy and Astrophysics in the New Millenium, endorsed SETI and recognized the ATA (then, the 1 Hectare Telescope) as an important stepping-stone o the Square Kilometer Array (SKA), its highest ranked "moderate project" in radio astronomy.

Located in Hat Creek, CA, formerly the site of the BIMA Array, the array currently consists of 42 6.1-m diameter antennas with continuous frequency response from 0.5 to 11.2 GHz. Science operations commenced in mid-2007. Highlights include large-scale continuum mosaics, a high-quality single-pointing image of the entire Andromeda galaxy in HI, and a 500-hour search for fast radio transients. A call for external proposals netted 24 proposals requesting 1200 hours of observing time in a wide range of fields. The wide field of view of the ATA enables a survey capability that is comparable to large single dish telescopes and within a factor of a few of the current Very Large Array (VLA). The compact configuration of the ATA and the high density of antennas provides unprecedented snapshot imaging quality as well as a resolution that is intermediate between the most compact VLA configuration and that of the Iargest single dishes. The frequency range of the ATA permits sensitive observations at frequencies rarely studied. Finally, the use of two separate correlators at two independently-tunable frequencies and the simultaneous ability to synthesize multiple independently-located phased array beams at four independently-tunable frequencies gives the ATA the capability to conduct a wide range of science at once.

Even with 42 elements, the ATA is a powerful radio survey telescope. Science goals include a 5 GHz continuum survey to match the 7.4-GHzN RAO VLA Sky Survey and the Sloan Digital Sky Survey within the first year of operation, and a survey of extragalactic hydrogen in the nearby universe to investigate galaxy evolution and intergalactic gas accretion. Transient and variable source surveys, pulsar science, spectroscopy of new molecular species in the galaxy, large-scale mapping of galactic magnetic filaments, and wide.field imaging of comets and other solar system objects are among the other key science objectives of the ATA. SETI surveys will target the inner Galactic plane for very luminous transmitters and hundreds of nearby stars, in some cases with sensitivities to terrestrial level signals. Broader Impact The Large-N, small-diameter (LNSD) concept that underlies the ATA design is the basis for the US and international designs for the SKA. Much of the technical development related to the ATA is important for the SKA and a range of new radio facilities employing the LNSD concept. Operation of the ATA will demonstrate the value of these in the best possible way - through science goals that cannot be otherwise achieved. The ATA has been and will continue to be the training ground for the next generation of centimeter-wave astronomers and instrumentalists. Eighteen graduate and undergraduate students have already been involved with the hardware and firmware design of the ATA. Additional students and postdocs have been involved in commissioning, calibration and observing. SETI science has a public appeal and a potential reward that go far beyond that of other fields of astronomy.

The ATA and its SETI program will continue to draw worldwide attention to radio astronomy. The appeal of SETI has already drawn the private investment into the ATA that has enabled its development and construction, creating a new model for public and private collaboration in radio astronomy.

Detection of Complex, Electromagnetic Markers of Technology   


The proposed work seeks to extend the current capabilities of SETI searches for signals indicative of technology in remote locations. This is significant because current searches of this type simply look for carrier signals, the transmissions used to synch receivers with the coded information either on or adjacent to the carrier signal. The carrier signal detections would not necessarily contain any of the information transmitted. As such, a detection of a carrier signal only indicates the presence of technology, but little about the content of the transmission. The proposers seek to expand the SETI search toward the more complex transmissions that are superceding the use of carrier signals on Earth today.

Dr. Jill Tarter, receives 2009 TED prize

Why the search for alien intelligence matters (TED Prize winner): Jill Tarter on TED.com

From TED2009! The SETI Institute's Jill Tarter makes her TED Prize wish: to keep looking for cosmic company. Using a growing array of radio telescopes, she (and all of us) can listen for patterns that may be a sign of intelligence elsewhere in the universe. (Recorded February 2009 in Long Beach, California. Duration: 21:23.)

Tuning in to the sounds of the universe

Download the Airspeed interview with Jill Tarter to learn more about her work at SETI, the tools she uses and they ways we all can get involved in the search for extraterrestrial life.

Then check out this series of pieces of rhythmic entertainment from Mickey Hart of the Grateful Dead. Using radio telescopes and instruments on board various spacecraft, these recordings are meant to connect the listener more closely with the universe. A new piece goes up on the Grateful Dead site after every concert on their tour (where the pieces are debuted). You can listen to the sounds and see the awesome visuals posted after each of the 23 city concerts at http://www.dead.net/universe-of-sound. Who knew the universe could sound like this!

Follow Jill's TED Blog